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YULI D. CHASHECHKIN, VASILIY G. BAYDULOV,
ANATOLIY V. KISTOVICH
Laboratory of Fluid Mechanics, Institute for Problems in Mechanics of the RAS 101/1 prospect Vernadskogo,
Moscow, 119526, Russia (E-mail: chakin@ipmnet.ru)

Received 11 March 2004; accepted in revised form 14 February 2006 / Published online: 14 July 2006

Abstract. Results of analytical studies of the governing equations of stratified rotating fluids based on the uni-
fication of theories of continuous and discrete groups, perturbations and modern numerical visualizations are
described. Symmetries of basic systems and their simplified versions, different approximations and constitutive
turbulent models are compared. A new method to calculate discrete groups analytically, which does not need
a preliminary search for continuous groups, is developed. As an example of the practical use of the developed
algorithm, a complete classification of cellular and roll structures of Bénard convection is presented. A complete
classification of 3D periodic motions in compressible viscous stratified and rotating fluids, including regular (wave)
and singular elements, is performed by perturbation methods. In all cases, in a viscous fluid, besides waves there
are two different periodic boundary layers. In a homogeneous fluid the split boundary layers are merged, thus
forming a joint doubly-degenerate structure. Stratification and rotation reduce the degeneration of the 3D peri-
odic boundary layers. Calculations of a 3D periodic wave beam emitted by an oscillating part of a sloping plane
are visualized by a computer-graphics method. The existence of thin extended components on the edges of the
3D wave cone is demonstrated.
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1. Introduction

The study of stratified flows is motivated logically by the historical evolution of theoretical
fluid mechanics and by a wide class of different technological and environmental applications.
In a model that was first developed for an ideal fluid, the drag of a body could not be cal-
culated for more than 100 years, as it does not fit the experimental data. The introduction of
viscosity effects in theoretical fluid dynamics allows the solution of a wide range of laminar-
flow problems but cannot solve the important problem of instability and turbulence. In the
environment, fluids are placed on a rotating spherical planet and are mostly stratified due to
the nonuniformity of the temperature or concentration fields of dissolved and suspended mat-
ter. Stratification and rotation, even if very weak, lead to certain new phenomena that are
not present in a homogeneous environment at rest. Among these phenomena there are inertial
and internal waves and so-called ‘large scale’ and ‘fine’ structures. The general circulation of
the Earth’s atmosphere manifests itself in counter-moving large-scale cells in the latitudinal
direction. The fine structure results in thin high-gradient interfaces, mostly in a vertical direc-
tion. Extended, almost horizontal, interfaces separate thicker and more homogeneous layers
in the ocean and in the Earth’s atmosphere. Boundaries between jets, vortices, vortex sys-
tems and convective cells are marked by sharp interfaces in a horizontal plane. Thin inter-
faces exist for rather a long time, that is, much longer than the specific diffusion time for the
given lengthscale. They produce picturesque patterns of environmental flows and their labo-
ratory models.
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Satellite observations reveal similarity in the general shapes and differences in the details
of flow patterns in the Earth’s atmosphere and the ocean containing elements with gradual
and discrete variations of the basic parameters. Cloud patterns in the atmosphere reveal jets,
wakes, stagnation areas and discrete cells produced by moisture convection above the ocean.
Cloud streets sometimes reveal a high degree of order and, at other times, chaotic disorder,
but the boundaries between the flow elements remain very sharp. The thickness of a bound-
ary is small with respect to the size of flow elements. These experimental facts should be taken
into account when analyzing basic mathematical models for environmental processes.

Because of the complexity of the governing fluid-dynamic equations, they are substituted
by simpler ones, and the degree of correspondence between the initial and the reduced sys-
tems cannot be assessed analytically. Fortunately, progress in computer hard- and software
techniques gives the opportunity of a practical realization of well-known mathematical meth-
ods with relatively simple algorithms but involving extremely large calculations. Among these
analytic methods there is the theory of continuous (Lie) groups, high-order perturbation the-
ory, asymptotic calculations and a new regular method of calculation that exploits discrete
symmetries of flows. Further development of these techniques enable one to construct exact
(on limiting space-time intervals) models in fluid mechanics. These advanced models allow one
to calculate all the varieties of the flow parameters described by nonlinear equations with a
prescribed accuracy directly or using exact solutions of their linearized residuals satisfying real
boundary conditions. The main goal of the paper is to present an algorithm for an objective
comparison of different models and to illustrate its efficiency by examples of exact solutions
of the 3D internal-waves-generation problem.

The plan for this paper is to discuss briefly the properties of the governing equations
employed in Section 2. Comparative analyses of point symmetries by Lie-groups methods for
different models of rotating and stratified flows (sets with the Navier–Stokes equation, turbu-
lence models) are presented in Section 3. A new method for the calculation of discrete sym-
metries of differential equations is given in Section 4. As an example, calculations of possible
flow patterns in Bénard convection, based on discrete symmetries, are employed in Section 5.
A complete classification of infinitesimal periodic motions of fluid, taking into account both
regular (waves) and singular (set of boundary layers) components of motion, is presented in
Section 6. The generation of 3D periodic internal waves by a compact oscillating source on
a rigid plane is discussed in Section 7 as an example of the construction of an exact solu-
tion. A summary of results and some concluding remarks are given in Section 8. A part of
the results has been published in a number of papers in the Russian journal Doklady Physics
oriented towards a brief urgent publication of scientific results. The status of the journal sup-
poses independent publication of extended versions of these papers.

2. Basic systems of governing equations

We analyze the general property of two types of equation in geophysical fluid-dynamics equa-
tion sets used to investigate large-scale and small-scale phenomena. We neglect the effects of
compressibility in this part of the paper. Large-scale fluid phenomena are studied for a spher-
ical planet rotating at an angular velocity � with a gravity field characterized by an acceler-
ation g. The density profile is defined by the salinity S of the concentration of dissolved or
dispersed matter and described by an algebraic equation of state. In general, an undisturbed
density profile ρ(z) is characterized by the buoyancy scale �= (d log ρ(z)/dz)−1 and buoyancy
frequency N =√

g/�, which can be assumed constant.
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The set of governing equations is [1]

ρ(S)

(
∂v
∂t

+ (v∇) v
)

=−∇P +∇ (µ(S)∇v)+ρ(S) (g −2�× v) ,

∂S

∂t
+ (v∇) S =∇ (κS(S)∇S) , (2.1)

div v =0, ρ =ρ(S),

where v = (u, v,w) is the velocity of the fluid, P is the total pressure, ρ = ρ(S) is the den-
sity of the fluid, µ and ν =µ/ρ are the dynamic and kinematic viscosity, κS is the salt-diffu-
sion coefficient, the salt-contraction coefficient being included in the definition of the salinity
S, which is a dimensionless variable. The set (2.1) consists of nonlinear differential equations
and an algebraic equation of state. These nonlinear differential equations are of a singularly
perturbed type and contain small coefficients in the high-order terms. In particular cases the
set (2.1) must be supplemented by initial and boundary conditions. In practical cases one can
use different simplified or model systems instead of the complex set (2.1).

In the environment, variations of density usually are small and in (2.1) can be neglected
everywhere, except for the buoyancy-force term including the large coefficient g. In this
so-called Boussinesq approximation the first equation of (2.1) is transformed into the
following (other equations of the set remain unchanged):

∂v
∂t

+ (v∇) v =− 1
ρ0

∇P ′ +∇ (ν(S)∇v)+ρ′(S)g −2�× v, (2.2)

where ρ′ = (ρ −ρ0)/ρ0 is the relative density variation, ρ0 is a reference density, P ′ is the vari-
ation of the pressure.

For solutions of practically important problems, instead of the set (2.1), different deriv-
atives and constitutive models are used. Due to relative-scale differences, effects of rotation
and stratification are analyzed separately [2, 3]. A natural instrument to compare properties
of different models is a comparison of their continuous symmetries defined by Lie-groups
methods [4, 5] and discrete symmetries.

Searching for Lie groups of the complex set of partial differential equations (PDE)
includes a large number of routine calculations, which can now be evaluated by means of
computer algebra. The algorithm for searching Lie-group generators is written in Maple.
Different procedures are used to control the calculations and to check the constructed sym-
metry group by direct insertion into the set of governing equations.

Using the linearized equation of state and the usual approximations of constant viscos-
ity and diffusivity, we calculated the basic infinite-dimensional group of symmetry of the set
(2.1) with approximation (2.2). The set of governing equations is written in the spherical
co-ordinate frame (r, ϑ,ϕ) : x = r sin ϑ cosϕ, y = r sin ϑ sin ϕ, z = r cosϑ ; where � is directed
along the axis Oz and acceleration due to gravity is directed along the radius-vector g=−ger.
As the fluid is placed into a centrally symmetric gravity field, the problem space becomes non-
uniform and space-translation symmetry is lost. This is a basic principle of classical mechan-
ics—the Galilean relativity principle is also violated for the same reason. So the basis of the
generators for the symmetry group of the set (2.1) with (2.2) includes the following operators:

X1 = ∂t (time translations);
Xπ =π(t)∂P ; X3 = ∂S −gr ∂P (pressure, mutual pressure and salinity shifts);
X2 =2t∂t + r∂r −2�t∂ϕ −v∂v −u∂u − (2�r sin ϑ +w)∂w −3S∂S −2

(
P + r2�2 sin2 ϑ

)
∂P
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(modified expansions);

X4 = ∂ϕ (rotations around the axis Oz);

X5 =−2 cos ϕ̃∂ϑ +2 cotanϑ sin ϕ̃ ∂ϕ +2 sin ϕ̃

(
r �+ 1

sin ϑ
w

)
∂u +

+2
(

r � cosϑ cos ϕ̃ − 1
sin ϑ

u sin ϕ̃

)
∂w + (r �)2 sin 2ϑ cos ϕ̃∂P (2.3)

(rotations around the axis Oỹ);

X6 =2 sin ϕ̃ ∂ϑ +2 cotanϑ cos ϕ̃ ∂ϕ + cos ϕ̃

(
r �+ 2

sin ϑ
w

)
∂u −

−
(

r � cosϑ sin ϕ̃ + 2
sin ϑ

u cos ϕ̃

)
∂w − (r �)2 sin 2ϑ sin ϕ̃ ∂P

(rotations around the axis Ox̃);
where ϕ̃ = ϕ + �t, r sin ϑ sin ϕ̃ = ỹ = inv, r sin ϑ cos ϕ̃ = x̃ = inv, π(t) is an arbitrary function of
time.

In a Cartesian co-ordinate plane placed on the north pole of the rotating system with uni-
form gravity acceleration (g =−gez) generators the groups of symmetries are:

X1 = ∂t (time translations);
Xπ =π(t)∂P ; X3 = ∂S −gr∂P (pressure, mutual pressure and salinity shifts);

and transformation to an arbitrary rectilinearly moving coordinate system

X =Xχ +Xη +Xζ , where

Xχ =χ(t) ∂x + χ̇(t) ∂u − (χ̈(t)x + χ̇(t)�y) ∂P ; (2.4)

Xη =η(t) ∂y + η̇(t) ∂v − (η̈(t)y − η̇(t)�x) ∂P ;
Xζ = ζ(t) ∂z + ζ̇ (t) ∂w − ζ̈ (t)z∂P .

The description of the fine structure of the atmosphere and ocean reveals that density gra-
dients in environmental flows can be relatively large in small-scale phenomena that are not
affected by centripetal and Coriolis forces. In this context it is necessary to compare Lie-group
symmetries of the governing equations in the common case and in the Boussinesq approxima-
tion.

The general set (2.1) with �=0 is characterized by the group containing the operators

X1 = ∂t ; X2...4 = ∂xi
(time and space translations);

X5...7 = t∂xi
+ ∂ui

(Galilean’s relativity principle); (2.5)

X8 =y∂x −x∂y +v∂u −u∂v (rotation in the horizontal plane);

X9,10 =
(

gt2

2
+ z

)
∂xi

−xi∂z + (gt +w) ∂vi
−vi∂w

(rotations in vertical planes moving with acceleration g)

and infinite-dimensional sub-algebra Xπ =π(t)∂P , (pressure shifts).
The system (2.1) contains algebraic parts that are equations of state for the density and

empirical functions for viscosity and diffusivity coeffiients that can be written in different
functional forms. Symmetry groups of the governing equations can be expanded or reduced,
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Table 1. Additional symmetry properties and optimal form of the equation of state.

Additional generators of the set (2.1) Equation of state

X11 =2t∂t + r∂r − v∂v − 3gt

2
(t∂z +2∂w)−2P∂P ρ ′ is arbitrary function of salinity.

X11 =2t∂t + r∂r − v∂v − 3gt

2
(t∂z +2∂w)+2ρ∂ρ , ρ ′ = (a0 +a1S)−b/a1 , ρ ′ = exp

(−b
/
a0S

)
,

X12 =P∂P +ρ∂ρ a0, a1 and b are arbitrary constants.

depending on the functional form of these values. Expansion of the symmetry group extends
the level at which the governing equations can be analyzed (2.1). Additional symmetries
expanding the basic symmetries (2.5), which are available for any equation of state, are pre-
sented in Table 1. These conditions prescribe the choice of the most constructive form of the
empirical equation of state [6].

In the Boussinesq approximation for (2.1), with the Navier–Stokes equations in the form
of (2.2), the basic symmetry group includes a general part which does not depend on the form
of the algebraic equation of state. Thus we have

X1 = ∂t (time translation);
X2 =y∂x −x∂y +v∂u −u∂v (rotation in the horizontal plane);

and infinite-dimensional sub-algebras

Xπ =π(t)∂P (pressure shifts)

and a transformation into an arbitrary rectilinearly moving coordinate system

Xχi
=χi(t) ∂xi

+χ ′
i (t) ∂vi

−χ ′′
i (t) xi ∂P , i =1,3. (2.6)

The most essential transformation of the symmetry properties is to expand the Galilean
principle of relativity in a noninertial system moving with an arbitrary rectilinear acceler-
ation. Fictitious inertial forces are compensated by the pressure-force transformations. This
condition, which is a sequence of the differences between the inertial and gravitational masses,
leads to preserving the form of the governing equations.

This symmetry was first found for the equations of an inviscid incompressible homoge-
neous liquid (Euler equations). The study of stratified flows provides a basis for understand-
ing this phenomenon and an instrument for its practical use in theoretical fluid mechanics.

A wide class of models with negligible diffusion effects (κS = 0, ν �= 0) is characterized by
a continuous dependence of symmetry groups on the state equation (ρ =ρ(S)). In all mod-
els of this kind the basic symmetry group is expanded and the algebra of the generators is
supplemented by additional generators. A new operator for the complete system (2.1) is

X3 =2t∂t + r∂r − v∂v −2P∂P −3ρ∂ρ (expansion),

and the ones for the Boussinesq system (2.2) are

X11 =2t∂t + r∂r − v∂v − 3gt

2
(t∂z +2∂w)+2ρ∂ρ (combined symmetry),

X12 =ρ∂ρ +P∂P (expansion),

where ρ∂ρ =ρ (∂ρ/∂S)−1 ∂S .
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Table 2. Optimal functional representation for the kinetic coefficients and equation of state.

Kinetic coefficients Equation of state

1. ν =ν0 (a0 +a1S)c/a1 , κS =κ0
S (a0 +a1S)c/a1 ρ ′ =b0 +b1S

2. ν =ν0 exp (cS) , κS =κ0
Sexp (cS) ρ ′ =ρ0 exp (bS)

3. ν =ν0 expS, κS =κ0
S exp (cS) ρ ′ =b0 +b1S

4. ν =ν0 (a0 +a1S)c/a1 , κS =κ0
S (a0 +a1S)c/a1 (only for Boussinesq system) ρ ′ =b1/a1 log (a0 +a1S)

where a0, a1, b0, b1, b, c, ν0, κ
0
S are arbitrary constants

If the kinetic coefficients in the governing equations (2.1) and (2.2) depend on the salinity,
the group analysis selects specific types of equations of state which lead to expansion of the
basic symmetry group. In Table 2 specific functions defining the kinetic coefficients and the
corresponding type of the equation of state are presented.

In practical fluid mechanics with complex topography, instead of the Navier–Stokes equa-
tions, different constitutive models including turbulence models are used. Depending on the
closure procedure, a flow described by different sets of governing equations results. One can
reveal the basic properties of the models by a Lie-group analysis.

Comparison of the symmetries of the models shows their profound differences. In a central
gravity field on a spherical planet, the set (2.1) derived subject to the Boussinesq approxi-
mation, besides the rotational symmetry around the axis of rotation Oz, includes two addi-
tional symmetries with the generators X5,X6 from (2.3) in co-rotation with the planet frame
(x̃, ỹ, z). On a plane-rotating surface in a uniform gravity field, when the frame is a local form
of a spherical one, there are no rotational symmetries. The poorest set of generators (2.4)
characterizes the plane approximation.

3. Models of turbulent flows

For the description of turbulent flows, a variety of models is constructed. Flows with zero
average velocity and finite vorticity, which one can observe past oscillating grids and meshes,
are described by the turbulent viscosity coefficient K. The closure condition is selected in the
form

(
vi∇i

)
vj =∇j

(
vivj

)=−∇jK

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (3.1)

where the coefficient K is an empirical function of the spatial co-ordinate. The system of gov-
erning equations for averaged values (here and below the sign of averaging is omitted), both
for 3D and 2D flows, is

∂vi

∂t
−
(

∂vi

∂xj

+ ∂vj

∂xi

)
∇jK =−∇P +Kvi, (3.2)

div v =0.

Operators of the basic symmetry group for system (3.2) have the form

X1...3 = ∂xi
(spatial shifts),

X4...6 =xi∂xj −xj ∂xi +vi∂vj −vj ∂vi (rotations),

X7 = r∂r +P∂P +K∂K, X8 = v ∂v +P ∂P (expansions), (3.3)

X9...11 =xi∂vj −xj ∂vi (nonuniform shifts of velocity).
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and infinite-dimensional sub-algebras

X =π(t) ∂P (pressure shifts),

Xϕi
=ϕi(t) ∂vi

−xiϕ̇i(t) ∂P ,

Xτ = τ(t) ∂t − τ̇ (t) (P ∂P +K∂K) (generalized shifts and expansions).

For the given model the basic symmetries are mostly the same as symmetries of the system
(2.1) without rotation involving the property of homogeneity and obeying isotropy of space
and time, but there are several specific groups of expansions and shifts [6]. At the same time
the set of operators (3.3) does not contain the operator of the Galilean transformation, which
is fundamental in classical mechanics. There are also additional generators X9...11,Xϕi

in (3.3),
which do not follow from the physical properties of fluid.

To improve the description of the fluid dynamics, more sophisticated closure schemes are
developed, including the family of (k–ε) models (k is the turbulent energy, ε is the velocity
of turbulent dissipation). To describe the dynamics of a temperature-stratified fluid, the (k–
ε–τ–ϑ) model is used (τ is the turbulent Reynolds stress, ϑ is the dispersion of temperature
fluctuations [7]). In tensor notation, with summation on repeated indices, the studied set of
governing equation is

div v =0,

dvi

dt
=− ∂P

∂xi

+ ∂

∂xj

(
ν

∂vi

∂xj

−wij

)
+giαT ,

dT

dt
= ∂

∂xi

(
κT

∂T

∂xi

−qi

)
,

dwij

dt
= ∂

∂xm

(
νt

σk

∂wij

∂xm

)
+Pij − 2

3
δij ε − c1

ε

k

(
wij − 2

3
δij k

)
− c2

(
Pij − 2

3
δijP

)
,

dk

dt
= ∂

∂xi

[
(ν +νt )

σk

∂k

∂xi

]
+π − ε, (3.4)

dqi

dt
= ∂

∂xj

(
νt

σϑ

∂qi

∂xj

)
+ (1− c2T )PiT −wij

∂T

∂xj

− c1T

ε

k
qi,

dϑ

dt
= ∂

∂xi

(
νt

σT

∂ϑ

∂xi

)
−2qi

∂T

∂xi

− cT

ε

k
ϑ,

dε

dt
= cε

∂

∂xi

(
νt

σε

∂ε

∂xi

)
+ cε1

ε

k

(
−wij

∂vi

∂xj

+βgiqi

)
− cε2

ε2

k
,

where d/dt is the substantial derivative; vi = v̄i , T = T̄ and P = P̄ are the averaged veloc-
ity, temperature and pressure; wik = v′

iv
′
k, qi = T ′ v′

i , ϑ = T ′2 are second-order statistical
moments; α, κT , α, κT , ν are νt = cµk2

/
ε, are the temperature expansion, heat conductiv-

ity, molecular and turbulent kinematic viscosity coefficients, k is kinetic energy of turbulent
motions; ε is the rate of turbulent kinetic-energy dissipation; �=−v′

iv
′
k

∂vi

∂xk
, Pij =−wim

∂vj

∂xm
−

wjm
∂vi

∂xm
+ α

(
giqj +gjqi

)
, PiT = −qj

∂vi

∂xj
+ βgiϑ are terms describing turbulent production;

c1, c2, c1T , c2T , cε, cε1, cε2, cµ, σk σϑ are fitted empirical coefficients.
The very complex set of turbulent Equations (3.4) is characterized by a poor set of sym-

metries. The set of symmetry-group generators for the system includes

X1 = ∂t , X2 = ∂T (time translation and temperature shift)

and infinite-dimensional sub-algebras

Xπ =π(t) ∂P (pressure shifts), (3.5)
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and transformation into an arbitrary rectilinearly moving coordinate system

Xχi
=χi(t)∂xi

+χ ′
i (t)∂vi

−χ ′′
i (t)xi∂P , i =1,2,3.

The translation and shift operators X1,X2 and Xπ coincide with appropriate operators of
the system (3.4). The turbulent model (3.4) conserves generalized Galilean invariance (2.5).
It is important to note that the set of generators (3.5) does not contain the rotation-group
generator of type X8 as in (2.3). In simpler (k–ε)-models the group of rotations reflecting the
property of space isotropy is also lost. This feature was corrected in the next generation of
turbulent models of (k–ε) type. One of the examples is given below.

The governing equations for the averaged values of this model are [8]

∂vi

∂t
+vα

∂vi

∂xα

+ ∂P

∂xi

=νvi + ∂

∂xα

[
νt

(
∂vi

∂xα

+ ∂vα

∂xi

)
− 2

3
δiαk

]
,

∂vα

∂xα

=0,

∂k

∂t
+vα

∂k

∂xα

= ∂

∂xα

[
(ν +νt )

∂k

∂xα

]
+
[
νt

(
∂vi

∂xj

+ ∂vj

∂xi

)
− 2

3
δij k

]
∂vi

∂xj

, (3.6)

∂ε

∂t
+vα

∂ε

∂xα

= ∂

∂xα

[(
ν + νt

σε

)
∂ε

∂xα

]
− cε1

ε

e

[
νt

(
∂vi

∂xj

+ ∂vj

∂xi

)
− 2

3
δij k

]
∂vi

∂xj

+ cε2
ε2

k
,

where cµ =0·09, cε1 =1·44, cε2 =1·92, σε =1·3.
The symmetry group of the system (3.6) with zero molecular viscosity ν = 0 and σε �= 1

contains the generators

X1 = ∂t (time translation),

X2 =2t∂t + r∂r − v∂v −2P∂P −4ε∂ε −2k∂k (expansions),

X3−5 =xi∂xj
−xj ∂xi

+vi∂vj
−vj ∂vi

, where i =1,2,3 (rotations),

and infinite dimensional sub-algebras

Xπ =π(t)∂P (pressure shifts),

Xχi
=χi(t)∂xi

+χ ′
i (t) ∂ui

−χ ′′
i (t)xi∂P (generalized Galilean principle),

reflecting the basic properties of physical space and mechanical systems. The set of generators
is equivalent to the set of Navier–Stokes equations.

In general, for complete evaluation of the reducibility of different sets of governing equa-
tions, in addition to comparison of point symmetries, it is necessary to search and analyze
discrete symmetries and nonlocal symmetries. Traditionally, the great advantage of searching
continuous symmetry groups is the existence of explicit computational methods in contrast to
the procedure of searching the discrete symmetries. The new constructive method for search-
ing discrete symmetries of differential equations based on the unification of continuous-group-
theory methods, and on embedding the equations into the expanded cotangent space and on
the technique of differential forms was developed [9, 10] and briefly presented below together
with illustrative examples [11].

4. Discrete symmetries of governing equations

The regular method of searching discrete symmetries is based on the unification of continuous-
groups analysis, embedding the problem into expanded cotangent space and differential-form
techniques. Conditions of automorphism of applied transformations are used to direct the
calculation of discrete symmetries.
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In the general case the set of differential equations of common type,

Eqk

({
xj

}
, {Fi} ,

{
F ′

i

}
, . . . ,

{
F

(l)
i

})
=0, (4.1)

is considered, where
{
xj

}
and {Fi} are sets of differential and field variables; consequently,{

F ′
i

}
,
{
F ′′

i

}
, . . . ,

{
F

(l)
i

}
are the sets of all possible partial derivatives.

Under the action of a discrete transformation, using the formal procedure of the change
of variables

({
xj

}
, {Fi}

) �→ ({
x̃j ,
(
xj ,Fi

)}
,
{
F̃i

(
xj ,Fi

)})
,

the system (4.1) is transformed into the form

Ẽqk

({
x̃j

}
,
{
F̃i

}
,
{
F̃ ′

i

}
,
{
F̃ ′′

i

}
, . . . ,

{
F̃

(n)
i

})
=0 (4.2)

System (4.1) can be presented by means of a differential-forms formalism on the basis of
1-form sets dx1,dx2, . . . ,dxn,dF1,dF2, . . . ,dFm and dp

(l)
q,ijk..., where

dp
(l)
q,ijk... = ∂(l)Fq/∂xi∂xj ∂xk . . .

designates the lth-order derivative of the qth field variable with respect to the differential vari-
ables xi, xj , . . . The indices i, j, . . . are arranged in a non-decreasing order. Consequently, sys-
tem (4.2) has its own 1-form set dx̃1,dx̃2, . . .dx̃n,dF̃1,dF̃2, . . . ,dF̃m and set dp̃

(l)
q,ijk.

The extended space dx1, . . . ,dx̃1, . . . is not a direct sum of its subspaces dx1, . . . ,dx̃1, . . .

because the basic forms dx1, . . . ,dFm and dx̃1, . . . ,dF̃m are connected by the automorphism

Lvl

(
dx̃j

)=bk
l L̃vl

(dx̃j ), Lvl

(
dF̃i

)=bk
l L̃vl

(
dF̃i

)
, (4.3)

where Lvl ( ), are Lie-generators for systems (4.1) and (4.2) acting in the spaces of the old and
new coordinates, bk

l are the constant coefficients of the nondegenerate automorphism matrix,
and vl is an infinitesimal symmetry isovector of (4.1).

The presence of automorphism (4.3) leads to the existence of diffeomorphism between
derivatives of the field functions in the old p

(l)
q,ijk... and in the new p̃

(l)
q,ijk... variables. The

explicit representation of this diffeomorphism has the form of a nonlinear algebraic equations
set.

In extended cotangent space two classes of 1-form are distinguished. The first one is a
class of basic (or identically annulled) 1-forms and the second is a class of 1-forms annulled
on the solutions of (4.1) and (4.2). The basic 1-forms are constructed in the form

ω
(b)
i =dFi − ∂Fi

∂x1
dx1 − ∂Fi

∂x2
dx2 −· · ·− ∂Fi

∂xn

dxn

In a similar manner, the 1-forms ω̃
(b)
i defined in a new coordinate space F̃i , x̃j are con-

structed.
The differential forms annulled on solutions of (3.1) are obtained as

ω
(s)
i =

∑
A

q,ijk...

(l) dp
(l)
q,ijk... +

∑
Bj dxj .

A linear combination of functions A
1,ijk...

(l) ,Bj and their external product with appropri-
ate forms of differential variables dxi must be used to construct the set (4.1). An analogous
procedure is used for constructing forms annulled on (4.2).
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Let symmetry transformations be defined by the functions

x̃k =�k

({xi} ,
{
Fj

})
, F̃l =�l

({xi} ,
{
Fj

})
. (4.4)

The basic forms in new coordinates can be represented by the following relation using
expressions (4.4), and the summation is assumed with respect to repeated indices

ω̃
(b)
i =dxk

(
∂

∂xk

+ p̃
(1)
m,k

∂

∂Fm

)(
�i + p̃

(1)
i,n�n

)
=�k

i dxk, where �i
k = 〈∂xk

∣∣ ω̃(b)
i

〉
. (4.5)

In accordance with the definition and construction principle the obtained forms are the
basic annulled forms. At the same time, the expansion (4.5) with respect to differential vari-
able forms permits to treat the fact of annulling ω̃

(b)
i as a result of annulling all the compo-

nents �k
i and a system of connections defined in the extended space

{
p

(1)
i,j , p̃

(1)
i,j

}
arises:

�k
i =0, i =1, . . . ,m, k =1, . . . , n (4.6)

We define the existence of discrete symmetries as a closure condition of the basic annulled
1-forms (4.5) on the solutions of the extended set of equations. The analytic representation of
this fact and the core of the method for searching the discrete symmetries have a form

d�k
i =λ

k,j
i ω

(b)
j +µ

k,p
i ω(s)

p +ν
k,q
i ω(s)

q , (4.7)

where the summation is assumed with respect to repeated indices.
As a result of automorphism, (4.3), the forms

{
ω̃

(b)
i

}
do not appear in the linear combi-

nation (4.7). The given method does not need to solve first the difficult problem of searching
for an infinitesimal symmetry isovector v1 of (4.1) [9]. On the other hand, the form ω̃

(b)
i is a

vector in the cotangent space with components �k
i . So the condition of the existence of dis-

crete symmetries is reduced to the condition of potentiality of this vector on the solutions of
(4.1) and (4.2). An illustration of a practical application of this technique in fluid dynamics
problems is given below regarding a Bénard-convection structure.

5. Cell patterns in Bénard convection

The method is applied to the problem of stationary free convection in a layer of a
homogeneous liquid heated from below. The kinetic coefficients of the liquid are functions
of temperature; the linearized equation of state ρ =ρ0 (1−T ) is used. Under the Boussinesq
approximation the governing equations describing stationary Bénard convection are

(v∇) v =−∇p +νv +ν′
T (2 (∇T ∇) v +∇T ×∇ × v)−T g,

∇v = v∇T =χT +χ ′
T ∇T ·∇T +Hδ (z) ,

(5.1)

where v is a velocity, P is a pressure without a hydrostatic part, T is the dimensionless tem-
perature normalized by the heat-expansion coefficient of liquid, g is the gravity acceleration,
ν,χ are the kinematic viscosity and temperature-conductivity coefficient, respectively, a prime
denotes a derivative with respect to temperature, the term Hδ(z) describes a plane horizontal
heat source of intensity H .

Applying to the set (5.1) the given algorithm for searching discrete symmetries, one can
produce a governing system of equations. The part of its solution describing the discrete
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symmetry is

x̃ = c (x cosϑ +y sin ϑ) , ỹ = c (−x sin ϑ +y cosϑ) , z̃= cz, c=±1,

T̃ =AT +T0, A=κ ′
T κ̃/κ̃ ′

T̃
κ, T0 = const, P̃ = κ̃

cκ
P − cT0g, (5.2)

ũ= κ̃

cκ
(u cosϑ +v sin ϑ) , ṽ = κ̃

cκ
(−u sin ϑ +v cosϑ) , w̃ = κ̃

cκ
w,

where κ̃ κ̃ ′
T̃

= cκκ̃ ′
T . In (5.2) κ is replaced by χ when the effect of the advective mechanism

is disregarded or by ν in the other case, (x, y, z) is a Cartesian coordinate frame, u, v,w are
corresponding velocity components; new variables are denoted by tildes. Under the action of
(5.2), in accordance with (4.6), the tangent variables are transformed as follows:

p̃x̃ cosϑ − p̃ỹ sin ϑ = κ̃2

cκ2
px, p̃x̃ sin ϑ + p̃ỹ cosϑ = κ̃2

cκ2
py, p̃z̃ = κ̃2

cκ2
pz. (5.3)

The value of angle ϑ remains to be defined. Let us consider the result of an n-fold action
of (5.2) and (5.3) which is an identical transformation to any differential or field variable of
(5.1). This condition defines the rotation angle

ϑ = π

2n

(
3− (−1)n

)
, if c=1, and ϑ = 2π

n
, if c=−1. (5.4)

When c = 1 (the case of constant kinetic coefficients), the symmetry of the velocity field
is defined by the rotational group SOn(2) when n �= 2m, or SO2n(2), n= 2m. If all convective
cells belong to a unique symmetry group, the regular planar structure consists of one charac-
teristic element. Such flows can be observed when n=2,3,6, which corresponds to the rota-
tional groups SO4(2) (squares), SO3(2) (triangles) and SO6(2) (hexagons). Such patterns are
observed in both kinds of liquid. The results of the experiment (photos) [12] and theoretical
analysis (schemes) are presented below in Figures 1–3.

The obtained structures can arise when all cells belong to subgroups of a common symme-
try group. It is possible when n= 4, 6 with corresponding rotational groups SO8(2), SO6(2).
For the case of SO8(2) symmetry, the planar convective structure consists of regular (sub-
group SO8(2)) or irregular (subgroup SO4(2)) octagons and squares (subgroup SO4(2)).

Under degeneration of SO8(2) symmetry, when only the subgroup SO4(2) plays a role, the
flow can be constructed on the basis of rectangular cells. For SO6(2) symmetry it is possi-
ble to form a cell pattern consisting of regular (subgroup SO6(2)) and irregular (subgroup
SO3(2)) hexagons. These patterns can be formed only in liquid with temperature-dependent
kinetic coefficients. Two-element systems are shown in Figures 4–5.

Figure 1. Regular triangles in convective flow structure: a, b) – experiments [12] and theory.
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Figure 2. Regular squares in convective flow structure: a, b) – experiments [12] and theory.

Figure 3. Regular hexagons in convective flow structure: a, b) – experiments [12] and theory.

Figure 4. Regular and irregular hexagons in convective flow structure: a, b) – experiments [12] and theory.

Figure 5. Regular squares and irregular octagons in convective flow structure: a, b) – experiments [12] and theory.
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Figure 6. Roll regime of convection: a) – constant viscosity, b) – temperature-dependent viscosity.

In media with constant kinetic coefficients, the symmetry SO2(2) with discrete rotation
angle π is absent. In the regime of roll convection, when all convective cells are horizontal
cylinders, this means the exclusion of vorticity alternation in neighboring cells. Vorticity of
2D convective rolls has the same sign if the kinetic coefficients are constant, as is shown in
Figure 6.

Alternative rotations in neighboring rolls occur in the general case but are unstable. All
calculated regular forms have been observed in experiments [12].

For the case of temperature-dependent kinetic coefficients (c=−1) all above-described pla-
nar patterns are available, including SO2(2) symmetry. Corresponding structures are observed
experimentally in a liquid with strong dependence of kinematic viscosity on temperature [12].
At the same time, the convective rolls of unique direction of rotation are longitudinally unsta-
ble and tend to transform into rectangular and square cells.

The direction of the flow in the center of the cell depends on the sign of the deriva-
tive of the kinetic coefficients on the temperature. If the kinetic coefficients are temperature-
dependent, a change of the flow-circulation sign in cells is possible under the condition

κκ ′
T

∣∣
T =T1

=− κ̃ κ̃ ′
T

∣∣
T =T2

(5.5)

where κ is either the kinematic viscosity ν or the temperature-diffusivity coefficient χ . The
illustration of this effect is presented below in the Figure 7. Such an effect has also been
observed in experiments [13].

As follows from (5.2), a similar effect can be observed in a liquid with weakly vary-
ing kinematic-viscosity coefficient and strong dependence of the temperature-conductivity

Figure 7. The change of velocity direction in cells due to variation of viscosity and temperature conductivities deriv-
atives signs: a) – dependence of kinetic coefficients on temperature, b) – scheme of flow in the cells.
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coefficient on temperature. Independently of the kind of convection pattern, all types of cells
should be members of the unique symmetry group (or members of its subgroups) character-
izing the observed phenomenon. The choice of the type of symmetry is defined by the phys-
ical parameters of the system and can be found by studying the temporal evolution of the
system with real boundary conditions.

One of the important questions is the nature of thin interfaces and sharp boundaries
between convective cells and the physics of their formation. Is this phenomenon typical for
nonlinear models or can it be described in a linear approximation? To answer this question,
a classification of periodic fluid motions is presented.

6. Classification of periodic motions of fluid

Each of the physical factors such as rotation, stratification, and compressibility of a fluid
described by the set of governing equations (1.1) is associated with a characteristic type
of wave flows, which are usually analyzed independently. When studying waves, dissipation
effects are considered as corrections providing flow attenuation [1, 3]. However, in continua,
dissipation factors determine the order of the equations and the total number of elements
of periodic flows, including waves and sets of boundary layers on solid and free surfaces.
Maintaining the order of the system of governing equations defined by the dissipation param-
eters enables one to find self-consistent solutions of linearized problems for the generation
of internal waves described by Equations (2.1)–(2.2) without additional empirical parameters
(force and mass sources [3]). In this connection the complete mathematical classification of
three-dimensional periodic flows in the bulk of a fluid is given below, taking into account
compressibility, stratification, rotation, and viscous-dissipation effects [14]. Diffusion and heat
conduction are disregarded.

The linearized form of the set (2.1), taking into account compressibility of the medium, is
analyzed. Oscillations of compressible stratified media are characterized by the buoyancy fre-

quency N =√
g/� and adiabatic frequency Nc =

√
N2 − g2

c2 , respectively, where c is the speed
of sound.

We use the Cartesian coordinate system (x, y, z), where the z-axis is directed towards the
zenith and the x- and y-axes are taken so that the corresponding projections of the angular
velocity are equal to each other. In the linear approximation, the system of the equations of
motion has the form

∂u

∂t
=−∂P

∂x
+2�

(
v sin ϕ − 1√

2
w cosϕ

)
+νu+

(
µ+ ν

3

) ∂

∂x
∇·v,

∂v

∂t
=−∂P

∂y
+2�

(
1√
2
w cosϕ −u sin ϕ

)
+νv +

(
µ+ ν

3

) ∂

∂y
∇·v,

∂w

∂t
=−∂P

∂z
+

√
2� (u−v) cosϕ +νw +

(
µ+ ν

3

) ∂

∂z
∇·v −ρg,

∂ρ

∂t
− w

�
+∇·v =0,

∂P

∂t
=−wg − c2∇·v

(6.1)

where v = (u, v,w) is the velocity, P and ρ are the pressure minus hydrostatic pressure and
medium-density perturbation normalized with respect to the density at the reference level z=
0;ϕ is the latitude of the observation point, and ν and µ are the first and second kinematic
viscosities.



Basic properties of free stratified flows 327

System (1) is supplemented by the no-slip boundary conditions on rigid surfaces and
the condition of damping of perturbations at infinity. The dynamic and kinematic boundary
conditions on the free surface zs = ζ (x, y) are [1]

(P −P0)ni −
(
σ ′

ik −σ
′(0)
ik

)
nk +αni⊥ζ

∣∣∣
z=ζ

=0, ∂ζ
/
∂t −w

∣∣
z=ζ

=0, (6.2)

where ⊥ = ∂2
/
∂x2 + ∂2

/
∂y2, P and P0 are pressures inside and outside the medium under

consideration, respectively; σ ′
ik and σ

′(0)
ik are the corresponding viscous-stress tensors; α is the

surface-tension coefficient; and ni is the component of the unit normal to the surface. The
analysis of system (1) is simplified when the viscosity coefficient and the ratio of the media
in contact (e.g., liquid and gas) is small.

When studying periodic flows v = v0 exp (ikr − iωt) ,P = P0 exp (ikr − iωt) , ρ = ρ0 exp(ikr−
iωt) with frequency ω and wave vector k = (kx, ky, kz

)
, the general solution of the system (1)

can be written as a superposition of elementary waves

A=
∑
j

+∞∫
−∞

+∞∫
−∞

aj

(
kx, ky

)
exp

(
i
(
kzj

(
kx, ky

)
z+kxx +kyy −ω t

))
dkx dky, (6.3)

where A is a velocity component, pressure, or density. The summation must be performed
over all roots of the dispersion equation that are obtained when the solution of (6.1) is
substituted in the boundary conditions of the problem or in the radiation condition in an
unbounded medium (attenuation of perturbations at infinity).

For stationary periodic waves, the frequency ω is fixed, and the dispersion equation
describes the relation between the wavenumber components that is expressed as kzj (kx, ky)

for given kx and ky values. The solution of the dispersion relation contains two types of
roots. Regular on viscosity roots, (Im kzj

(
kx, ky

)∼ να, where α is positive number), which
have their analogues in ideal fluids (ν →0,Im kzj →0), describe waves. Singular on viscosity
roots (Im kzj ∼ ν−α) describe boundary layers. The power of the dispersive equation defines
the number of singular roots and consequently the number of types of boundary layer. The
open question is what elements of flow can propagate in the fluid body? Are they only waves
or waves and analogues of boundary layers, which look like singular interfaces in a fluid inte-
rior? Singular interfaces are observed inside a lee-waves field past an obstacle in a continu-
ously stratified fluid [15].

Generally speaking, the system (6.1) with boundary conditions (6.2) admits two types of
waves that are surface waves whose amplitude decreases monotonically with the distance from
the boundary and internal waves with maximum displacements in the bulk of the fluid. When
the media in contact have considerably different densities, their properties can be analyzed
independently [1].

For flows in the bulk of the fluid, the substitution of (6.3) in (6.1) yields a system of alge-
braic equations for the amplitudes u0, v0,w0, P0, ρ0(

iω−νk2 − (µ+ν
/

3
)

k2
x

)
u0 + (2� sin ϕ − (µ+ν

/
3
)

kx ky

)
v0 −

−
(√

2� cosϕ + (µ+ν
/

3
)

kx kz

)
w0 − ikxP0 =0,

− (2� sin ϕ + (µ+ν
/

3
)

kxky

)
u0 +

(
iω−νk2 − (µ+ν

/
3
)
k2
y

)
v0 + (6.4)

+
(√

2� cosϕ − (µ+ν
/

3
)

ky kz

)
w0 − ikyP0 =0,
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(√

2� cosϕ − (µ+ν
/

3
)

kx kz

)
u0 −

(√
2� cosϕ + (µ+ν

/
3
)
ky kz

)
v0 +

+
(

iω−νk2 − (µ+ν
/

3
)

k2
z

)
w0 − ikzP0 −gρ0 =0,

−ikxu0 − ikyv0 + (1/�− ikz

)
w0 + iωρ0 =0,

−ikxc
2u0 − ikyc

2v0 +
(
g − ikz c2

)
w0 + iωP0 =0,

where k2 =k2
x +k2

y +k2
z .

From the condition of the existence of a nontrivial solution, a dispersion equation for
hybrid 3D waves of the most general type follows:

ωDν(k)
(
ωDν(k) D̃ν(k)+2

√
2ω�g

(
ky −kx

)
cosϕ

)
−

−ωDν(k)N2
(
Dν(k)+ i

(
µ+ν

/
3
)
k2
⊥
)

+
+4ω�2

(
N2 sin2 ϕ −ω

(
Dν(k)+ i

(
µ+ν

/
3
)
f 2(k)

))
+

+ c2
(
Dν(k)

(
N2

c k2
⊥ −ωk2Dν(k)

)
+4 ω�2 f 2(k)

)
=0, (6.5)

where f (k)=kz sin ϕ + (kx +ky

)
cosϕ/

√
2, D̃ν(k)=ω+ i (4ν/3+µ)k2,Dν(k)=ω+ iνk2.

Dispersion Equation (6.5) for the wavenumber k is singularly perturbed, because the lead-
ing, k6, term involves a small factor ν2. In the general case, two of the six roots of (6.5) are
regular in viscosity and describe the propagation of wave perturbations and the remaining
four roots characterize the set of coexisting boundary layers. Single-frequency boundary layers
differ from each other in thickness and other properties. Their number and behavior generally
depend on the space dimension and are determined by the boundary conditions.

Solutions of (6.5) are further analyzed in the spherical coordinate system (k,�,�)

introduced in the wavenumber space
(
kx, ky, kz

)
by the relations kx = k sin � cos�, ky =

k sin � sin �,kz =k cos�. In this analysis, both types of singular solutions, as well as solutions
that are regular in viscosity, are preserved.

The domain of existence of propagating waves that have real frequency ω and are char-
acterized by dispersion relation (6.5) depends on many factors, such as the wave ratio and
intrinsic rotation and buoyancy frequencies, the compressibility of the medium, and the geom-
etry of the problem, and is determined by the inequality

2ω2�2 sin2 � cos2 ϕ (sin � − cos�)2 ≥
c2
(

4�2
(
N2 sin2 ϕ −ω2

)
−ω2

(
N2 −ω2

))

g2
(
N2

c sin2 �−ω2 +4�2F 2
) , (6.6)

which is simplified for certain types of waves.
In an unbounded medium, on a plane to which the normal is characterized by angles �

and �, there are two boundary layers with thicknesses

δb± =
√

2ν

|ω± −ω| , ω± = N2
c

2ω
sin2 �

[
1±

√
1+ 16ω2�2F 2

N4
c sin4 �

]
, (6.7)

where F =
(√

2 cos� sin ϕ + sin �(sin � + cos�) cosϕ
)/√

2.
These boundary layers exist together with three-dimensional waves. Since the condition

g�
/
c2 � 1 is satisfied for virtually all media, the adiabatic frequency Nc in the expressions

for ω± in (6.7) can be approximately replaced by the buoyancy frequency N .
Taking into account compressibility and disregarding rotation effects (�=0), we conclude

from (6.5) that propagating three-dimensional acoustic gravity waves exist in two frequency



Basic properties of free stratified flows 329

bands ω ≤ Nc and ω ≥ N . In the ω � Nc band, they exhibit the properties of internal grav-
ity waves. Their properties for ωN approach those of isotropic sound. Simultaneously with
waves, two types of boundary layers with the characteristic thicknesses

δSt = δN

√
2
/

sin �ω, δi = δN

√√√√ 2 sin �ω∣∣∣(1− g�

c2

)
sin2 �− sin2 �ω

∣∣∣ ≈ δN

√√√√ 2 sin �ω∣∣∣sin2 �− sin2 �ω

∣∣∣ , (6.8)

where δN =
√

ν
/
N,�ω = arcsin

(
ω
/
N
)
, are formed at rigid boundaries. The first of them is

similar to periodic Stokes flow in a homogeneous fluid [1], and the second, whose parame-
ters depend both on the buoyancy frequency N and on the speed of sound c, is specific for

stratified media. The universal microscale δN =
√

ν
/
N is common for both boundary layers.

The thicknesses of the boundary layers also depend on the slopes of the waves and bounding
surfaces.

The frequency band ω− < ω < ω+ of the existence of inertial gravity waves in stratified
rotating incompressible media is limited by the values

ω2
± = 1

2

(
N2 +4�2 ±

√(
N2 +4�2 cos 2ϕ

)2 +16�4 sin2 2ϕ

)
,

which depend on the latitude of the observation point. Simultaneously with 3D inertial grav-
ity waves, there are two types of boundary layers with the scales

δb± = δN

√
2

|ω± −ω∗| , ω± = sin2 �

2ω∗


1±

√
1+ 16ω2�2F 2

N4 sin4 �


 , ω∗ = ω

N
. (6.9)

Inertial acoustic waves in a homogeneous fluid (N =0) coexist with two separated boundary
layers with the thickness

δb± =
√

ν

� |F ± cos�ω| , (6.10)

where �ω =arccos
(
ω
/

2�
)

is the slope of the propagation lines of the inertial acoustic waves
to the horizon. One of these waves with thickness δb+ is an analogue of the well-known
Ekman layer. Periodic flows have the properties of inertial and acoustic waves for ω�� and
the opposite case, respectively.

Three-dimensional acoustic waves in a homogeneous fluid (N = � = 0) are characterized
by the dispersion ω2 = k2

(
c2 − iω

(
4ν
/

3+µ
))

. In this case two sets of boundary layers are
joined in the united doubly degenerate Stokes layer with the thickness δb =√2ν/ω. Perturba-
tions within this layer are transverse with zero divergence of the velocity; i.e., the fluid within
it behaves as incompressible.

From the form of the dispersion of three-dimensional periodic perturbations in a homo-
geneous incompressible fluid, k2

(
ω+ iνk2

)2 = 0, when (N =�=∇ · v =0), it follows that this
medium is free of developed propagating waves. A doubly degenerate viscous boundary

layer consisting of two periodic Stokes flows with thickness δb =
√

2ν
/
ω is formed on

the rigid oscillating boundary. It means that classical 3D Navier–Stokes equations, both
for compressible and incompressible fluids, form an ill-posed problem due to the merg-
ing of boundary layers. The degeneration of Navier–Stokes equations for homogeneous
fluids is removed by additional symmetry posed by boundary conditions (2D problems,
axial-symmetric problems).
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The inclusion of thermal diffusivity and diffusion in multicomponent media leads to both
the appearance of additional equations in the system (6.1) of the equations of motion and
to the increasing of the order of the system and the number of types of boundary layers.
Each dissipative factor gives room for the appearance of a new pair of boundary layers, which
can be either completely or partially separated. Some simple examples of composed boundary
layers are discussed in [16].

Large-scale wave and fine-structure boundary-layer elements are inseparable components
of the united system of periodic flows. All elements of this system are formed and disappear
simultaneously, regardless of differences in their spatial scales.

In the general case, the regular parts of periodic solutions for stratified rotating media are
matched with solutions of similar problems in a stratified or homogeneous fluid at rest. In a
homogeneous fluid two different boundary layers merge in the united degenerate layer. There
are discontinuities on wave characteristics in a stratified ideal fluid [17]. Similar structures in
the periodic wave-beams in a viscous fluid have not been recognized up to now. The inverse
analytic extrapolation of solutions in an ideal fluid into a viscous fluid is impossible because
of the insufficient completeness of the original functional space.

In the general case, the dynamics of hydrodynamic systems is determined by the nonlin-
ear interaction between all structural elements of flows that are large-scale waves and thin
boundary layers. For example, variation of the thicknes and nonlinear interaction of bound-
ary layers can lead to generation in cases, when direct excitation of waves in linear theory
is forbidden by the condition of infinitesimal-wave propagation [3, Chapter 4, pp. 375–385].
Nonlinear generation of periodic waves by boundary layers on a circular disk performing tor-
sion (angular) oscillations has been studied theoretically and experimentally [18, 19]. Results
are in reasonable agreement in the range of flow parameters where effects related to the for-
mation of edge vortices are negligible. Generation of internal waves by interacting boundary
layers is studied in [20].

Owing to large vorticity, interacting boundary layers are effective generators of vortex
motions. Experimental studies of the dynamics of boundary layers and the generation of vor-
tices require substantial improvement of instruments for visualization and flow measurement.
These instruments must visualize the flow field and resolve the fine structure of the smallest
elements in the flow.

An illustration of the practical use of the described approach to study periodic motions is
presented below. The 3D generalization of the classical Stokes problem for continuously strat-
ified fluid is discussed. We analyze the generation of fluid motions by a compact plane source
oscillating in a sloping rigid plane. It is known that periodic motions of compact sources in a
stratified field produce periodic boundary layer and internal waves. A more detailed analysis
shows that a self-consistent solution satisfying exact boundary conditions describes, in addi-
tion to the wave cone, two different embedded boundary layers. Numerical visualization of
the solutions shows that singular structures manifest themselves not only on an emitting sur-
face but also at the edges of the wave cone.

7. Internal waves and internal boundary layers in a continuously stratified fluid

An exact calculation of 3D harmonic internal-waves generation has been carried out before
only for a single special case, namely when the source is part of the surface of a vertical cylin-
der [21]. In this case the calculations are simplified considerably due to the matching between
the symmetries of the radiator and the wave-field geometry.
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Figure 8. Coordinate frames.

When the source of a fluid motion is a rectangle or an ellipse oscillating along a rigid
plane, the linearized system (2.1) for stratified fluid motions in the Boussinesq approximation
(2.2) is

ρ0
∂v
∂t

=−∇P +ρ0νv −ρgez,
∂ρ

∂t
+vz

dρ0

dz
=0, div v =0, (7.1)

where P,ρ and v= (vx, vy, vz) are the pressure density and velocity of the fluid; ν is the kine-
matic viscosity, g is the acceleration due to gravity directed opposite to the axis Oz. Part of
the surface makes oscillations with velocity v (ξ, η, t), where ξ, η are coordinates along a plane
(Figure 8). The boundary conditions are no-slip for the velocity on the whole surface and
attenuation of all disturbances at infinity.

To simplify the calculations we use four coordinate systems, which are shown in Figure 8.
The line of action of the gravity force defines the reference to the laboratory coordinate sys-
tem (x, y, z). The local coordinate system (ξ, η, ζ ) is connected with the emitting surface,
which lies in the Oξη plane and, without loss of generality, can be obtained by rotating the
laboratory coordinate system (x, y, z) by an angle ϕ around the y-axis. With the wave cone
connected, the attached system of coordinates is (q, p, α), where the q-axis is directed along
the wave cone, the p-axis is directed transversely, and α is an angular variable. The following
relations exist between these systems

ξ =x cosϕ + z sin ϕ, η=y, ζ =−x sin ϕ + z cosϕ, x = r cosα, y = r sin α z= z,

p = r sin θ − z cos θ, q = r cos θ + z sin θ (7.2)

We consider stationary periodical oscillations, when the time dependence of all quantities
is exp (−iωt) and the forcing frequency ω is the constant. This factor is omitted below.

In an incompressible fluid two auxiliary scalar functions �, �, defining the velocity vector,
are introduced to simplify the calculations (toroidal – poloidal decomposition [22])

v =∇ × ez�+∇ × (∇ × ez�) , (7.3)

The system (7.1) is now transformed into two disconnected equations(
ω2−N2⊥ − iων2

)
⊥�=0, (ω− iν ) ⊥� =0, (7.4)
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where ⊥ = ∂2
x + ∂2

y . Solutions the equations ⊥�,⊥� = 0 describing isopycnic and non-
dissipative motions are not realised in physical experiments. These equations are the result of
the system of governing equations increasing when one uses a toroidal-poloidal decomposi-
tion [22] and are not analyzed below. A more detailed analysis of the physical properties of
these operations is presented in [23]. Then Equation (7.4) is transformed into

(
ω2−N2⊥ − iων2

)
�=0, (ω− iν) � =0 (7.5)

Solutions of (7.4) are constructed by an integral method using Fourier transforms

�=
∫ +∞

−∞

[
A(kξ , kη)eik1ζ +B(kξ , kη)eik2ζ

]
eikξ ξ+ikηηdkξ dkη, (7.6)

� =
∫ +∞

−∞
C(kξ , kη)eik3ζ+ikξ ξ+ikηηdkξ dkη, ζ >0,

where components of wave vectors are defined by the solutions of the dispersion equation cor-
responding to the system (7.5) and are expressed in terms of two components of the wave
vector ki(kξ , kη), i =1,2,3:

[
iν
(
k2

3 +k2
⊥
)

+ω
] {

ω2
(
k2 +k2

⊥
)

−N2
[(

kξ cosϕ −k sin ϕ
)2 +k2

η

]
+ iων

(
k2 +k2

⊥
)2
}

=0.

(7.7)

There is one solution of (7.6) which is regular with respect to the viscosity. It describes the
propagation of internal wave beams with a wavelength λ−2π/k defined by the boundary con-
ditions. There are two solutions that are singular with respect to the viscosity. These describe
a boundary layer with characteristic thickness δN =√

ν/N [23]. The boundary layers reflect a
balance between the inertial, buoyancy and viscous forces in the vicinity of the rigid surface.

The solutions of the dispersion equations (for small enough viscosity) can be found by
standard perturbation methods

k1 =k
(0)

1 + iν k
(1)

1 ; k
(0)

1 = (kξ sin 2ϕ +2κ cos θ
)/

2µ,

k
(1)

1 = sin θ
(
kξ sin ϕ cos θ +κ cosϕ

)4

2N µ4 κ cos θ
, k2 = i+ signµ

δϕ

− kξ sin 2ϕ

2µ
, (7.8)

k3 = i+1
δν

+ i+1
4

δν

(
k2
ξ +k2

η

)
,

where θ = arcsin (ω/N) is the inclination of the internal wave-propagation direction to the

horizontal, κ =
√

k2
ξ sin2 θ −µk2

η,µ= sin2 ϕ − sin2 θ, δν =√2ν/ω, δϕ =
√

2ν sin θ
/
N |µ|.

Only the imaginary part of the root k1 differs from the wavenumber for waves in an ideal
liquid. The real part defines propagating waves, and the imaginary part defines the spatial struc-
ture of the beam and viscous damping. Therefore, the member with a spectral density A(kξ , kη)

describes internal waves. Roots k2 and k3 with a characteristic scale O(
√

ν/ω) have no counter-
part in an ideal fluid and tend to infinity at ν →0 and the expression with coefficient B(kξ , kη)

corresponds to an internal boundary layer with thickness δϕ =
√

2ν sin θ
/
N |µ|=δNf (θ, ϕ). This

type of boundary layer is specific for a stratified fluid. And the coefficient C(kξ , kη) corresponds
to a viscous-wave boundary layer with thickness δSt =

√
2ν/ω=δNf (θ), existing both in viscous

homogeneous, and in a stratified liquid. The roots k2 and k3 also describe boundary currents
inside the wave-beam.
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Substituting (7.6) in the boundary condition, we obtain a linear system defining the spec-
tral coefficients A,B,C. The solution of the system is


A

B

C


= 1




D11 D12 D31

D21 D22 D32

D31 D32 D33


 ·

Uξ

Uη

Uζ


 (7.9)

where the coefficients of the matrix Di j are

D11 =−ik2
η

[
kξ + 1

2
(k2 −k3) sin 2ϕ

]
− ikξβ2β3, D12 =−ikη

(
k2
η +β2

2

)
,

D13 =−ik2
η

[
(k2 −k3) cos2 ϕ +k3

]
− ik2β2β3, D21 =−ik2

η

[
kξ + 1

2
(k1 −k3) sin 2ϕ

]
− ikξβ1β3,

D22 =−ikη

(
k2
η +β2

1

)
, D23 =−ik2

η

[
(k1 −k3) cos2 ϕ +k3

]
+ ik1β1β3,

D31 =
(
k2
η cos2 ϕ +k2

ξ

)
(k1 −k2) kη,

D32 = (k1 −k2)

[
−kξβ1β2 +k2

η

(
1
2
(k1 +k2) sin 2ϕ +kξ cos 2ϕ

)]
,

D33 = (k1 −k2) kη sin ϕ
⌊
−k2

η cosϕ +kη

(
k1γ2 +kξβ2

)⌋
,

= (k1 −k2)
{
−kξβ1β2β3 + ik4

η cosϕ + ik2
η

⌊
β3 (γ1 sin ϕ +β2 cosϕ)+γ1β

2
1 −γ2β

2
2

⌋}

Here U = 1
4π2

∫ +∞
−∞ v(ξ, η)e−ikξ ξ−ikηηdξ dη is the Fourier transform of the velocity, and βi =

ki sin ϕ −kξ cosϕ, γi =ki cosϕ +kξ sin ϕ.
The expressions (7.6) are the general solution of the linearized periodic internal wave-

generation problem satisfying the boundary conditions exactly, where the spectral coefficients
A(kξ , kη),B(kξ , kη) and C(kξ , kη) are defined by expressions (7.9) and k1, k2, k3 are defined by
formulas (7.8).

The calculations are completed for two practically important generator shapes of that are
used in experiments. We study disturbances produced by a rectangular and a circular disk
in a fluid with low viscosity and weak stratification. Wave-field parameters are calculated at
large distances from the source oscillating along the plane (shear source), transverse (piston
source) and bi-transversal (bi-pistons). Conditions for the applicability of standard approxi-
mations valid for small ratios of the boundary-layer thicknesses and wavelength are defined.
Results of wave attenuations along a central cone or centre plane for different 2D and 3D
sources are presented in Table 3.

In limiting cases all constructed solutions are matched continuously to each other and
with well-known exact solutions. The solutions are written in a form that allows easy com-
parison with laboratory experiments.

If the wave source is a horizontal disk of radius R, oscillating in a vertical direction with
velocity amplitude U and frequency ω then the stream function of the propagating distur-
bances is calculated from (7.6):

� =UR

∞∫
0

J1(kr)

k(k2 −k1)

[
k2eik1(k)z +k1eik2(k)z

]
dk (7.10)
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Table 3. Vertical displacements h (0, q) along the central wave cone (wedge in 2D case) for different 2D
and 3D small sources (a, b�Lν, q a, b,Lν = 3

√
gν
/
N ).

Type of a source Strip (2D) Rectangular (3D) Disk (3D)

Longitudinally moving surface (shear source)
λ0a

δ
1/3
N

1
q2/3

λ0ab

δ
2/3
N

1
q4/3

λ0R
2

δ
2/3
N

1
q4/3

Transversally moving surface (piston source)
λ0a

δ
2/3
N

1
q1/3

λ0ab

δN

1
q

λ0R
2

δN

1
q

Bi-piston moving surface
λ0a

δ
4/3
N

a

q2/3

λ0ab

δ
5/3
N

b

q4/3
–

δN =√
ν/N is universal microscale of periodic motions, λ0 =u0

/
N – characteristic wavelength.

where the regular root (proportional ν) and the singular root
(∼1/

√
ν
)

of the dispersion rela-

tions ω2
(
k2 +k2

1,2

)
−N2k2 + iνω

(
k2 +k2

1,2

)2 =0 are

k2
1 =−k2 + i sin θ

2δ2
N


1−

√
1+ 4ik2δ2

N

sin3 θ


 , k2

2 =−k2 + i sin θ

2δ2
N


1+

√
1+ 4ik2δ2

N

sin3 θ


 , (7.11)

where δN = √
ν/N, θ = arcsin(ω/N) is the slope of the wave cone to the horizon. Wavenum-

ber k1 corresponds to propagating waves, wavenumber k2 describes the boundary layer with
lengthscale δω = δN

√
2/sin θ . The condition of attenuation of all disturbances in the upper

half-plane (z≥0) at infinity is satisfied at the next values of the roots Im k1 >0 and Im k2 >0.
The spatial structure of the wave cone is defined by the imaginary part of the solution (7.10),
which is not small, even in the case of weak stratification and small viscosity.

From (7.10) the next expressions for the vertical and radial components of the velocity are
as follows:

vz =UR

+∞∫
0

J1 (kR)J0(kr)

k2 −k1

(
k2eik1z −k1eik2z

)
dk, (7.12)

vr =−iUR

+∞∫
0

k2k1

k2 −k1

J1(kR)J1(kr)

k

(
eik1z − eik2z

)
dk (7.13)

and vorticity components

�α =U R

∞∫
0

dk

k2 −k1

J1(kr)J1(kR)

k

(
k2eik1z −k1eik2z

) (
k1k2 −k2

)
. (7.14)

For large distances (r R) from the small disk (R �Lν,Lν = (ν�/N)1/3) in the co-ordi-
nate frame (q,p) connected with the wave cone (axis p is directed normally to the cone) the
asymptotic expression for the vertical component of the velocity can be written in canonical
form [8]

vz(p, q)= 1− i√
π

U R2 sin θ

√
sin θ

p sin θ +q cos θ

+∞∫
0

k
1/2
p exp

(
ikpp − νk3

pq

2N cos θ

)
dkp. (7.15)
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Figure 9. Modal structure in the central plane cross-section of conic 3D periodic waves produced by a vertically
oscillating horizontal circular disk of small a) – R = 1.7 cm, uni-modal; and large b) – R = 4 cm radius, bi-modal.
The field of the vertical velocity component modulus is presented. (N =1·2 s−1;ω=0·998 s−1;U =0·25 cm/s, t =0).

Figure 10. Fine envelopes of a 3D bimodal conic wave-beam produced by a vertically oscillating horizontal circular
disk (N = 1·2 s−1;ω = 0·998 s−1;U = 0·25 cm/s, R = 4 cm >Lν = 1·8 cm t = 0) in the fields of derivatives of the radial
velocity component: a) – first derivative ∂vr/∂z; b) – second derivative ∂2vr/∂z2.

The wave amplitude decreases inversely proportional to the distance from the source and
oscillates across the beam. This expression describes only the regular component of the veloc-
ity. For the calculation of singular components the method of boundary functions is used in
an ordinary sense.

To illustrate the fine structure of 3D periodic internal waves, the beam integrals (7.6) were
calculated numerically on a square mesh with resolution from 0·01 to 0·1 mm. The modal
structure of the wave cone is illustrated by Figure 9. A source that is small with respect to
the viscous wave-scale Lν produces a uni-modal symmetric wave-cone; a large generator pro-
duces a bi-modal cone that gradually transforms into a uni-modal one with distance.

Asymmetry in the profile of the vertical velocity component reflects the anisotropy of the
internal and external edges of the wave cone. The horizontal velocity component is symmetric
with respect to the central cone.

Small-scale disturbances on the edges on the beam are clearly visualized by a distribu-
tion of first and second derivatives of the radial velocity component. Their thickness is of the
order of the magnitude of the thickness of the boundary layer. These elements of the periodic
motion are restructured rather fast and during the wave period these disturbances can be dis-
tributed across the whole beam or are concentrated in the thin beam envelope. The existence
of the fine element of the beam can explain the direct formation of ‘trauma stratification’ as
observed in experiments with crossed periodic internal wave-beams [24, 25] (Figure 10).

Equivalent roots of the same dispersion relation describe all the elements of the family
of periodic motions in a continuously stratified fluid. Thus large-scale waves that are regular
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elements and small-scale boundary layers that are singular elements are generated and dis-
appear simultaneously. So the time of existence of singular components (boundary layers on
rigid surfaces and internal boundary flows on surfaces of discontinuity of the density and its
derivatives in the bulk of the fluid) is determined by the time of existence of large-scale waves.

8. Conclusion

This paper describes solutions of fluid-mechanics problems based on an adequate analysis of
the governing equations. The analysis is based on calculations of infinitesimal groups, dis-
crete groups and the construction of a complete set of solutions of the linearized problem.
If the whole set of regular and supplementing singular components of flow are taken into
account, solutions of the initially singularly perturbed problem satisfy all the boundary condi-
tions. Searching for Lie groups was carried out by computer-algebra systems producing well-
known calculations that are not easily realized by hand. A new explicit method has been pro-
posed to find discrete symmetry groups for ordinary and partial differential equations and
their systems.

Knowledge of the invariants of symmetry groups helps to construct exact solutions of
nonlinear differential equations, to find an optimal coordinate frame allowing partial or com-
plete separation of variables, to reduce the number of independent variables or to simplify the
governing equations and to calculate regular or asymptotic expansions in a perturbation
theory. As to theoretical fluid mechanics, Lie and discrete-group methods help to estimate
the degree of mutual reducibility of different models and to find the range of applicabil-
ity of the governing equations and methods of their solution. Calculations of discrete sym-
metries allow one to predict and classify possible types of geometric elements of a general
flow pattern. Numerous calculations, when applying group-theoretical methods to real fluid-
dynamic problems, become feasible due to progress in computer technique and the develop-
ment of computer-algebraic programs. As an example, the classification of regular cells and
rolls produced by Bénard convection in a homogeneous fluid layer has been presented here.
Realization of the potentialities of group methods for numerical analysis is a powerful source
for further progress in the mathematical description of fluid dynamics with essential reduction
of calculation volumes.

The classification of a complete set of 3D periodic motions in fluids presented here gener-
alizes the classical Stokes scheme for waves and accompanying periodic boundary layer. Both
internal and acoustic-gravity waves are supplemented by two types of boundary layers on
rigid boundaries. The first of these is similar to periodic Stokes flow in a homogeneous fluid,
and the second, whose parameters depend both on the buoyancy frequency and the slope of
the surface is specific for stratified media. The universal microscale δN is the common length
scale for both boundary layers.

Inertial acoustic waves in a homogeneous fluid also coexist with two separated boundary
layers with distinguished thicknesses. One of these layers is an analogue of the known Ekman
layer. An isotropic longitudinal (v‖k ) sound wave in a homogeneous fluid at rest is charac-
terized by the dispersion relation k2 =ω2

/(
c2 − iω

(
4ν
/

3+µ
))

, which describes waves and a

twice degenerated Stokes-type boundary layer of thickness δν =
√

2ν
/
ω, where the motion is

divergence-free.
Periodic motions in a homogeneous incompressible fluid at rest (N = g = � = ∇ · v =

0, c → ∞) are characterized by the dispersion relation k2
(
ω+ iνk2

)2 = 0, which describes
wave-like bi-directional inviscid longitudinal motions (k2 = 0) with wave-vector components
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v =−P̃0k/ρ0 and a double boundary layer with a thickness δν =√2ν/ω. In the boundary layer
transverse, divergence-free isobaric motions are observed (k ·v=0, kx = (1+ i)

√
ω/2ν ky =kz =

0 ) where vx =0, and vy, vz are independent. Due to the degeneration of 3D boundary layers,
the approximation of a homogeneous fluid of constant density (or classical 3D Navier–Stokes
equations) is an ill-posed problem.

The inclusion of thermal diffusivity and diffusion in multicomponent media leads to the
inclusion of additional equations in the set of governing equations and to an increase in the
number of boundary-layer types [16]. A new pair of boundary layers is associated with any
additional dissipative parameter. Boundary layers are characterised by completely or partially
different scales. Large-scale waves and fine-structure boundary-layer elements are inseparable
components of the united system of periodic flows. All elements of this system are generated
and disappear simultaneously, regardless of differences in scales. Solutions for stratified rotating
media allow a uniform transition to a homogeneous fluid at rest. In this case, two different
boundary layers are merged in the unified degenerate layer. The inverse analytic extrapolation
of solutions is impossible because of insufficient completeness of the functional space of the
original problem.

From an analysis of the exact solution of 3D periodic waves generated by a disk on
a solid plane performing small oscillations follows that high-gradient envelopes bound the
internal-wave beams in continuously stratified media. The properties of these envelopes and
their dynamic impact are needed in further studies.

The sets of governing equations in fluid mechanics form combined systems including non-
linear partial differential equations, a nonlinear algebraic equation of state and boundary
conditions on complex solid boundaries mostly having nonlinear shape. The differential equa-
tions are characterized by symmetry groups reflecting the basic conservation laws and specific
symmetries. Generally, both differential and algebraic parts of the set of governing equations
contain small coefficients which can be used for constructing a small expansion parameter
and a procedure for simplifying the initially complex and unresolved set, for example intro-
ducing the Boussinesq approximation, performing linearization and so on. This operation can
essentially change the properties of the studied system. A comparison of the symmetries of
the initial and transformed sets of equations helps to estimate the degree of correspondence
of these sets.

In the general case, the dynamics of hydrodynamic systems is determined by the nonlin-
ear interaction between all structural flow elements both regular (waves, vortices) and of a
singular kind (boundary layers on solid surfaces and internal boundary currents in a fluid
interior). In particular, variations in the structure and nonlinear interactions of boundary lay-
ers make it possible to generate internal waves, even in the cases where direct excitation is
forbidden in a linear theory and by the propagation conditions [3]. Owing to large vorticity,
interacting boundary layers are effective generators of vortex motions. Experimental studies of
the dynamics of boundary layers and the generation of vortices require substantial improve-
ment of visualization instruments and flow measurement. These instruments must be capable
of resolving the fine structure of the smallest flow elements.
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